Require
Export
WhyArrays.
Require
WhyPermut.
Require
ZArithRing.
Require
Omega.
Set Implicit Arguments.
Definition
sorted_array :=
[A:(array Z)][deb:Z][fin:Z]
`deb<=fin` -> (x:Z) `x>=deb` -> `x<fin` -> (Zle #A[x] #A[`x+1`]).
Lemma
sorted_elements_1 :
(A:(array Z))(n:Z)(m:Z)
(sorted_array A n m)
-> (k:Z)`k>=n`
-> (i:Z) `0<=i` -> `k+i<=m`
-> (Zle (access A k) (access A `k+i`)).
Proof
.
Intros A n m H_sorted k H_k i H_i.
Pattern i. Apply natlike_ind.
Intro.
Replace `k+0` with k; Omega.
Intros.
Apply Zle_trans with m:=(access A `k+x`).
Apply H0 ; Omega.
Unfold Zs.
Replace `k+(x+1)` with `(k+x)+1`.
Unfold sorted_array in H_sorted.
Apply H_sorted ; Omega.
Omega.
Assumption.
Save
.
Lemma
sorted_elements :
(A:(array Z))(n:Z)(m:Z)(k:Z)(l:Z)
(sorted_array A n m)
-> `k>=n` -> `l<(array_length A)` -> `k<=l` -> `l<=m`
-> (Zle (access A k) (access A l)).
Proof
.
Intros.
Replace l with `k+(l-k)`.
Apply sorted_elements_1 with n:=n m:=m; [Assumption | Omega | Omega | Omega].
Omega.
Save
.
Hints
Resolve sorted_elements : datatypes v62.
Lemma
sub_sorted_array : (A:(array Z))(deb:Z)(fin:Z)(i:Z)(j:Z)
(sorted_array A deb fin) ->
(`i>=deb` -> `j<=fin` -> `i<=j` -> (sorted_array A i j)).
Proof
.
Unfold sorted_array.
Intros.
Apply H ; Omega.
Save
.
Hints
Resolve sub_sorted_array : datatypes v62.
Lemma
left_extension : (A:(array Z))(i:Z)(j:Z)
`i>0` -> `j<(array_length A)` -> (sorted_array A i j)
-> (Zle #A[`i-1`] #A[i]) -> (sorted_array A `i-1` j).
Proof
.
(Intros; Unfold sorted_array ; Intros).
Elim (Z_ge_lt_dec x i).
Intro Hcut.
Apply H1 ; Omega.
Intro Hcut.
Replace x with `i-1`.
Replace `i-1+1` with i ; [Assumption | Omega].
Omega.
Save
.
Lemma
right_extension : (A:(array Z))(i:Z)(j:Z)
`i>=0` -> `j<(array_length A)-1` -> (sorted_array A i j)
-> (Zle #A[j] #A[`j+1`]) -> (sorted_array A i `j+1`).
Proof
.
(Intros; Unfold sorted_array ; Intros).
Elim (Z_lt_ge_dec x j).
Intro Hcut.
Apply H1 ; Omega.
Intro HCut.
Replace x with j ; [Assumption | Omega].
Save
.
Lemma
left_substitution :
(A:(array Z))(i:Z)(j:Z)(v:Z)
`i>=0` -> `j<(array_length A)` -> (sorted_array A i j)
-> (Zle v #A[i])
-> (sorted_array (store A i v) i j).
Proof
.
Intros A i j v H_i H_j H_sorted H_v.
Unfold sorted_array ; Intros.
Cut `x = i`\/`x > i`.
(Intro Hcut ; Elim Hcut ; Clear Hcut ; Intro).
Rewrite H2.
AccessSame; Try Omega. AccessOther; Try Omega.
Apply Zle_trans with m:=(access A i) ; [Assumption | Apply H_sorted ; Omega].
Do 2 (AccessOther; Try Omega).
Apply H_sorted ; Omega.
Omega.
Save
.
Lemma
right_substitution :
(A:(array Z))(i:Z)(j:Z)(v:Z)
`i>=0` -> `j<(array_length A)` -> (sorted_array A i j)
-> (Zle #A[j] v)
-> (sorted_array (store A j v) i j).
Proof
.
Intros A i j v H_i H_j H_sorted H_v.
Unfold sorted_array ; Intros.
Cut `x = j-1`\/`x < j-1`.
(Intro Hcut ; Elim Hcut ; Clear Hcut ; Intro).
Rewrite H2.
Ring `j-1+1`.
AccessOther; Try Omega.
Apply Zle_trans with m:=(access A j).
Apply sorted_elements with n:=i m:=j ; Try Omega ; Assumption.
Assumption.
Do 2 (AccessOther; Try Omega).
Apply H_sorted ; Omega.
Omega.
Save
.
Lemma
no_effect :
(A:(array Z))(i:Z)(j:Z)(k:Z)(v:Z)
`i>=0` -> `j<(array_length A)` -> (sorted_array A i j)
-> `0<=k<i`\/`j<k<(array_length A)`
-> (sorted_array (store A k v) i j).
Proof
.
Intros.
Unfold sorted_array ; Intros.
Do 2 (AccessOther; Try Omega).
Apply H1 ; Assumption.
Save
.
Lemma
sorted_array_id : (t1,t2:(array Z))(g,d:Z)
(sorted_array t1 g d) -> (array_id t1 t2 g d) -> (sorted_array t2 g d).
Proof
.
Intros t1 t2 g d Hsorted Hid.
Unfold array_id in Hid.
Unfold sorted_array in Hsorted. Unfold sorted_array.
Intros Hgd x H1x H2x.
Rewrite <- (Hid x); [ Idtac | Omega ].
Rewrite <- (Hid `x+1`); [ Idtac | Omega ].
Apply Hsorted; Assumption.
Save
.